Online Nuclear Engineering Degrees - Schools & Programs

Find schools


Is an Online Nuclear Engineering Program Right for Me?

An online nuclear engineering degree can be beneficial to anyone interested in furthering their studies, whether at the undergraduate or graduate degree level. Some or maybe all of the coursework in an online nuclear engineering degree, whether for a bachelor's, master’s, or doctoral degree, may be available through distance-based learning and Internet connectivity. Students generally need only a laptop or a personal computer to complete an online program.

Online programs allow you to save time on commuting and finish your coursework and homework assignments on a schedule that fits your needs.

However, like with any other campus-based program, you'll still have assignments to be completed by a specific date. At the same time, the actual learning component, whether it's participating in group discussions and assignments or reading material online, may provide more flexibility.

You'll also need a certain degree of discipline and commitment to keep pace with your online program. Plus, the students that perform best in such programs also dedicate a considerable amount interacting with their peers online and participating in class discussions.

Keep these considerations in mind as you evaluate different online programs and schools for nuclear engineering.

Admissions Requirements for Online Nuclear Engineering Programs

Online nuclear engineering programs’ admissions requirements vary by school and degree level. The following criteria are among the most common:

  • A high school diploma or equivalent
  • An accredited bachelor’s degree in nuclear engineering or a relevant field (graduate programs)
  • A minimum high school or undergraduate GPA (e.g., >3.2)
  • Solid grades in prerequisite math and science courses
  • Standardized test scores on the SAT, ACT, GRE, or other exams
  • A personal essay or statement of intent
  • Academic and/or professional references (graduate programs)
  • A resume or CV
  • An interview (graduate or highly-competitive programs)

List of Online Nuclear Engineering Degree Programs

Filter by state :
School City State Website Undergrad Graduate Grads
The University of Tennessee-Knoxville


TN 99
University of Pittsburgh-Pittsburgh Campus


PA 47
North Carolina State University at Raleigh


NC 46
Virginia Polytechnic Institute and State University


VA 5
Pennsylvania State University-World Campus

University Park

PA 4
Kansas State University


KS 3
Arizona State University-Skysong


AZ 2

Program Accreditation for Nuclear Engineering

Accreditation gives prospective students a sense of an online nuclear engineering program’s quality and reliability. When a school says it is accredited, it means a third-party organization has reviewed its curriculum, practices, and policies and verified they meet certain quality standards.

One should be especially conscious of whether a program is accredited by the Accreditation Board for Engineering and Technology (ABET) as financial aid, graduate program admission, and career prospects may depend upon it.

Online nuclear engineering degrees should also be accredited by whatever regional organization oversees such licenses. Regional accreditors include:

  • Commission on Colleges for the Southern Association of Colleges and Schools (SACS)
  • Northwest Commission on Colleges and Universities (NWCCU)
  • Higher Learning Commission of the North Central Association of Colleges and Schools (HLC-NCA)
  • Middle States Commission on Higher Education (MSCHE)
  • New England Association of Schools and Colleges (NEASC)
  • Northwest Commission on Colleges and Universities (NWCCU)
  • Western Association of Schools and Colleges (WASC)

Students can visit the U.S. Department of Education online to learn more about approved accreditation bodies.

Curriculum & Specialization in Nuclear Engineering

Online nuclear engineering courses prepare students for practice or research positions in the nuclear industry but vary from one institution to another. The following are among the most common:

  • Fundamentals of nuclear engineering
  • Fission power engineering
  • Bio-nuclear engineering
  • Nuclear design
  • Nuclear reactions and radiation
  • Nuclear reactor theory
  • Nuclear security and proliferation
  • Radiation safety and shielding
  • Radiation sources, interaction, and detection
  • Thermodynamics
  • Computational methods
  • Materials in nuclear technology

Nuclear engineering curricula include a mix of general education, core, and elective courses. Additionally, program specializations provide a more targeted education in students’ areas of interest. Online nuclear engineering degree specializations include:

  • Fuel cycle and waste management
  • Modeling and simulation
  • Nuclear instrumentation and control
  • Nuclear materials
  • Nuclear medical instrumentation
  • Nuclear fusion and plasma sciences
  • The nuclear reactor core design
  • Radiation detection and measurement
  • Safety analysis
  • Thermal and fluid science

1North Carolina State University

The North Carolina State University of Raleigh offers an online master of nuclear engineering degree that is available entirely online and it requires no thesis, final oral exam, or on-campus residency. Online courses are the same as on-campus courses in terms of requirements, academic rigor, and content.

The major admission requirements for the program include a bachelor’s degree from an accredited college or university in an engineering discipline, an overall GPA of 3.0, three letters of recommendation, and TOEFL or IELTS scores for all international applicants. GRE scores are not required for admission.

The program comprises 30 credits, out of which 18 must be in nuclear engineering, nine credits must be from outside of nuclear engineering for developing interdisciplinary breadth, while the remaining three must be from a nuclear engineering project. Some of the courses in the curriculum include reactor engineering, radiation safety and shielding, nuclear materials, nuclear fuel cycles, and radiation and reactor fundamentals.

On successful completion of the program, graduates can take up roles such as nuclear engineer, isotopes and radiation engineer, nuclear licensing engineer, nuclear project engineer, nuclear safety engineer, and nuclear repair engineer, to name a few.

  • Location: Raleigh, NC
  • Accreditation: Southern Association of Colleges and Schools Commission on Colleges
  • Expected Time to Completion: 15 to 24 months
  • Estimated Tuition: North Carolina residents ($513 per credit); Non-residents ($1,361 per credit)

2Pennsylvania State University

Penn State World Campus of University Park offers an online nonthesis master of engineering in a nuclear engineering program providing students with a flexible and relevant curriculum, the course work of which has been developed by experts in the field. Consistently ranked as one of the best in the nation by the U.S. News & World Report, this online program is identical to the on-campus program and is taught by the same faculty members.

Admission requirements for the program include a bachelor’s degree from a regionally accredited U.S. institution or its equivalent, a grade-point average of 3.0 or higher, an official transcript from each institution attended, three recommendation letters, a current resume, a statement of purpose, and TOEFL or IELTS scores for international applicants.

Made up of 30 credits, the program includes courses such as nuclear and radiochemistry, introduction to statistical thermodynamics, nuclear materials, radiological safety, radioactive waste control, power plant simulation, and reactor engineering, among others.

At the end of the program, graduates can pursue opportunities at electrical utility companies, development laboratories, universities and colleges, engineering design firms, nuclear power plants, and factories that make nuclear equipment.

  • Location: University Park, PA
  • Accreditation: Middle States Commission on Higher Education
  • Expected Time to Completion: 24 months
  • Estimated Tuition: $1,121 per credit

3Virginia Polytechnic Institute and State University

Virginia Tech offers two graduate certificates in nuclear engineering: a graduate certificate in nuclear engineering and a graduate certificate in nuclear science technology and policy (NSTP). These certificates provide students with a solid foundation in nuclear reactor physics. The programs involve additional specialization options in the nuclear fuel cycle, reactor physics, reactor thermal hydraulics, radiation measurements, nuclear power plant operations, or nuclear materials.

The nuclear engineering certificate requires students to have a bachelor of science degree in science or engineering, while the NSTP graduate certificate requires a bachelor of science degree in a technical or policy discipline. Additional application requirements include college transcripts, letters of recommendation, and TOEFL scores for international students.

The nuclear engineering certificate is made up of nine credits while the NSTP graduate certificate consists of 12 credits. The curriculum includes courses such as nuclear engineering fundamentals, nuclear nonproliferation, safeguards & security, nuclear reactor analysis, nuclear plant systems & operations, and nuclear fuel cycle, among others.

Apart from these certificates, Virginia Tech also offers an online master of engineering (MENG) in nuclear engineering program which consists of 30 to 33 credits.

  • Location: Blacksburg, VA
  • Accreditation: Southern Association of Colleges and Schools Commission on Colleges
  • Expected Time to Completion: Certificate (one semester); master’s (three semesters)
  • Estimated Tuition: Virginia Resident ($842.50 per credit); Non-Virginia resident ($1,642.25 per credit)

4The University of Texas

The University of Texas launched its online master’s in nuclear and radiation engineering program in 1999, well before most schools. Students can complete courses and laboratory modules online, though they must report to campus twice throughout the program. A separate two-week campus-based intensive is recommended for students considering doctorates, but not required.

Applicants to the program must have a bachelor of science degree in physical sciences or an engineering discipline from an accredited institution, a minimum grade point average of 3.0, letters of recommendation, and TOEFL scores for international students. GRE scores are not required for the 2021 cycle.

Digitally delivering educational content to online students, the program includes courses such as nuclear power engineering, computational methods in radiation transport, nuclear radiation shielding, nuclear safety and security, mathematical methods for nuclear and radiation engineers, and design of nuclear systems, among others.

Educating the next generation of leaders in nuclear science and engineering, this program prepares students to conduct leading research at the forefront of the nuclear community and apply nuclear technology for solving multidisciplinary problems.

  • Location: Austin, TX
  • Accreditation: Southern Association of Colleges and Schools Commission on Colleges
  • Expected Time to Completion: 24 to 36 months
  • Estimated Tuition: Texas resident ($1,429 per credit); non-resident ($2,034 per credit)

5Kansas State University

Kansas State University of Manhattan, KS has an online master of science in nuclear engineering, which was created with working students in mind. Students need only attend campus once at the end of the program for an oral exam.

To get accepted into the program, applicants must have a bachelor’s degree in nuclear, mechanical, or another engineering field, a minimum GPA of 3.0, a statement of objectives, a current resume or curriculum vitae, letters of recommendation, unofficial transcripts from each institution attended, and GRE scores.

Consisting of 30 credits, the program includes coursework in effects of irradiation on electronic materials and devices, nuclear reactor engineering, nuclear reactor theory, radiation protection and shielding, radiation measurement systems, Monte Carlo for engineers, and PRA and fire safety.

The program opens up opportunities in utility industries, nuclear power equipment manufacturing, engineering consulting firms, government, and more for graduates.

  • Location: Manhattan, KS
  • Accreditation: Higher Learning Commission (HLC) of the North Central Association of Colleges and Schools
  • Expected Time to Completion: 24 months
  • Estimated Tuition: $594.50 per credit

Campus Visitation & State Authorization for Online Nuclear Engineering Programs

Online nuclear engineering programs make degrees and certificates more accessible but do not necessarily spare students from all campus visits. Online schools may require students to attend on-site intensives, exams, presentations, and other tasks. These visits are usually short and sparse, amounting to no more than two per year. Students researching online nuclear engineering degrees should prepare for any on-site requirements before applying to programs.

Lastly, distance-based students may only attend programs that admit students from their state of residence. An online program’s “state authorization” status is typically listed on a school’s website (e.g., Penn State World Campus), and for those who don’t have the information, prospective students should contact admissions offices to ensure eligibility.

Influential Nuclear Engineering Professors

Amir A. Bahadori, PhD Kansas State University

Dr. Amir Bahadori is an assistant professor in the department of mechanical and nuclear engineering at Kansas State University. He is a former NASA Graduate Research Program fellow and has worked at the NASA Johnson Space Center for five years before joining K-State. His research efforts are focused on radiation imaging, characterization of radiation environments, and understanding the response of humans and electronics to radiation exposure.

Dr. Bahadori teaches nuclear engineering courses such as radiation protection and shielding. His research has been published in journals such as the American Journal of Roentgenology, Journal of Radiation Research, and Physics in Medicine and Biology. He holds a bachelor’s degree in mechanical engineering with a nuclear engineering option from K-State and a master’s and PhD in medical physics from the University of Florida.

William Charlton, PhD University of Texas at Austin

Dr. William Charlton is the John J. McKetta Energy Professor in the nuclear and radiation engineering program within the Walker Department of Mechanical Engineering at the University of Texas at Austin. He teaches or has taught courses on the design and analysis of nuclear security systems, nuclear deterrence and nonproliferation, nuclear detection, and nuclear forensics.

Dr. Charlton has over fifteen years of expertise in the designing, development, evaluation, and testing of technological solutions for nuclear threats. He has received many awards such as the Special Service Award from the Institute of Nuclear Materials Management and the Distinguished Research Award from NSRI. He completed his BS, MS, and PhD in nuclear engineering, all at Texas A&M University.

Fan-Bill Cheung, PhD Pennsylvania State University

Dr. Fan-Bill Cheung is the George L. Guillet Professor at Pennsylvania State University, where he teaches online nuclear engineering courses to graduate students. His primary research and interest areas include energy systems, thermal processing of materials, nuclear power, and reactor thermal hydraulics.

Dr. Cheung has also contributed to several research papers and books. Notably, he conducted energy research at the Argonne National Laboratory. He has published in journals such as the International Journal of Heat and Mass Transfer, Applied Thermal Engineering, and International Journal of Multiphase Flow. He holds a Ph.D. in Nuclear Engineering from the University of Notre Dame.

Alireza Haghighat, PhD Virginia Tech

Dr. Alireza Haghighat is a professor of nuclear engineering and science at Virginia Tech where he also advises online nuclear engineering students’ independent study efforts. He has served as chairman of the board of the Virginia Nuclear Energy Consortium; interim director of the Florida Institute of Nuclear Detection and Security; and president and CEO of H&S Advanced Com. Technologies.

Dr. Haghighat teaches or has taught courses such as nuclear reactor analysis, Monte Carlo methods for particle transport, particle transport methods and application, and advanced reactor physics. His research has been published in prominent journals such as Progress in Nuclear Energy, and Annals of Nuclear Energy. Dr. Haghighat has a BS in Physics from Pahlavi (Shiraz) University and an MS and PhD in Nuclear Engineering from the University of Washington.

John Mattingly, PhD North Carolina State University

Dr. John Mattingly a professor for NC State’s online nuclear engineering program and the technical director of its Consortium for Nonproliferation Enabling Capabilities where he leads the RADIANS research team. Before teaching, he worked at two national laboratories for 15 years.

Dr. Mattingly’s primary research focus is radiation measurement and analysis techniques for nuclear security applications, including counter-terrorism and arms control. He has published his research in prominent journals such as International Journal for Numerical Methods in Engineering, and Measurement Science and Technology. He holds a BS, MS, and PhD in Nuclear Engineering, all from the University of Tennessee, Knoxville.

More on Nuclear Engineering

Exceptional Nuclear Engineering Professors

From radiological medicine and power generation to national defense and hydrogen cell creation, it is difficult to overstate the impact nuclear engineers can have on our world and lives. Meet these exceptional professors of nuclear engineering.